博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
60.Median of Two Sorted Arrays(两个排序数组的中位数)
阅读量:5292 次
发布时间:2019-06-14

本文共 1643 字,大约阅读时间需要 5 分钟。

Level:

  Hard

题目描述:

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

You may assume nums1 and nums2 cannot be both empty.

Example 1:

nums1 = [1, 3]nums2 = [2]The median is 2.0

Example 2:

nums1 = [1, 2]nums2 = [3, 4]The median is (2 + 3)/2 = 2.5

思路分析:

  该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

  首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

  当A[k/2-1]>B[k/2-1]时存在类似的结论。

  当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

  通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

如果A或者B为空,则直接返回B[k-1]或者A[k-1];如果k为1,我们只需要返回A[0]和B[0]中的较小值;如果A[k/2-1]=B[k/2-1],返回其中一个;

代码:

public class Solution{    public double findMedianSortedArrays(int []A,int []B){        int m=A.length;        int n=B.length;        int l=(m+n+1)/2;         int r=(m+n+2)/2; //两个数组的长度和可能是奇数也可能是偶数        return(getkth(A,0,B,0,l)+getkth(A,0,B,0,r))/2;}    public double getkth(int []A,int astart,int[]B,int bstart,int k){        if(astart>A.length-1)            return B[bstart+k-1];        if(bstart>B.length-1)            return A[astart+k-1];        if(k==1)            return Math.min(A[astart],B[bstart]);        int amid=Integer.MAX_VALUE;        int bmid=Integer.MAX_VALUE;        if(astart+k/2-1

转载于:https://www.cnblogs.com/yjxyy/p/11089938.html

你可能感兴趣的文章
机器学习基石(9)--Linear Regression
查看>>
Min Stack
查看>>
从LazyPhp说起
查看>>
Fine Uploader文件上传组件
查看>>
Spring Boot与Spring的区别
查看>>
查看linux 之mysql 是否安装的几种方法
查看>>
javascript中的传递参数
查看>>
objective-c overview(二)
查看>>
python查询mangodb
查看>>
软件测试(基础理论一)摘
查看>>
consonant combination
查看>>
基于Flutter实现的仿开眼视频App
查看>>
析构器
查看>>
驱动的本质
查看>>
Swift的高级分享 - Swift中的逻辑控制器
查看>>
https通讯流程
查看>>
Swagger简单介绍
查看>>
C# 连接SQLServer数据库自动生成model类代码
查看>>
关于数据库分布式架构的一些想法。
查看>>
大白话讲解 BitSet
查看>>